Relation of the Spectra of Symplectic Rarita-schwinger and Dirac Operators on Flat Symplectic Manifolds

نویسندگان

  • SVATOPLUK KRÝSL
  • S. KRÝSL
چکیده

Consider a flat symplectic manifold (M, ω), l ≥ 2, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If λ is an eigenvalue of the symplectic Dirac operator such that −ılλ is not a symplectic Killing number, then l−1 l λ is an eigenvalue of the symplectic Rarita-Schwinger operator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 71 0 . 14 25 v 1 [ m at h . D G ] 7 O ct 2 00 7 Classification of 1 st order symplectic spinor operators over contact projective geometries

We give a classification of 1 st order invariant differential operators acting between sections of certain bundles associated to Cartan geometries of the so called metaplectic contact projective type. These bundles are associated via representations , which are derived from the so called higher symplectic, harmonic or generalized Kostant spinor modules. Higher symplectic spinor modules are aris...

متن کامل

Fake symmetry transitions in lattice Dirac spectra

In a recent lattice investigation of Ginsparg-Wilson-type Dirac operators in the Schwinger model, it was found that the symmetry class of the random matrix theory describing the small Dirac eigenvalues appeared to change from the unitary to the symplectic case as a function of lattice size and coupling constant. We present a natural explanation for this observation in the framework of a random ...

متن کامل

On Solutions of the Higher Spin Dirac Operators of Order Two

In this paper, we define twisted Rarita-Schwinger operators RTl1 and explain how these invariant differential operators can be used to determine polynomial null solutions of the higher spin Dirac operators Ql1,l2 .

متن کامل

The h-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary

Several proofs have been published of the modZ gluing formula for the h-invariant of a Dirac operator. However, so far the integer contribution to the gluing formula for the h-invariant is left obscure in the literature. In this article we present a gluing formula for the h-invariant which expresses the integer contribution as a triple index involving the boundary conditions and the Calderón pr...

متن کامل

The η–invariant, Maslov index, and spectral flow for Dirac–type operators on manifolds with boundary

Several proofs have been published of the modZ gluing formula for the η–invariant of a Dirac operator. However, so far the integer contribution to the gluing formula for the η–invariant is left obscure in the literature. In this article we present a gluing formula for the η–invariant which expresses the integer contribution as a triple index involving the boundary conditions and the Calderón pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007